The Surgical Repair of Neonatal Ebstein’s

Thomas K. Chin, MD
Chief of Pediatric Cardiology
Christopher J. Knott-Craig, M.D.
Chief of Pediatric CV Surgery
Co-Directors, LeBonheur Pediatric Heart Institute

ETSU Pediatric Grand Rounds, March 9, 2011

DISCLAIMER

NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.

Wilhelm Ebstein

Born Nov. 27, 1836; Jauer, Silezia, Poland
Disciple of Rudolf Virchow
Jul. 11, 1859: Medical degree
Career briefly interrupted by Franco-Prussian War
July 9, 1864: Autopsy on Joseph Prescher

The tricuspid valve was extremely abnormal in appearance. A membrane originated from a normally developed annulus fibrosus. Fifteen millimeters below the annulus fibrosus a malformed leaflet originated from the endocardium.
Ebstein’s Anomaly of the Tricuspid Valve

- Congenital anomaly of the heart
- Characterized by an inferiorly displaced septal leaflet of the tricuspid valve
- Enlarged right atrium, composed of the “true” right atrium and an “atrialized” portion of the right ventricle
- Varying degrees of tricuspid regurgitation and pulmonary obstruction

Clinical Features of Ebstein’s Anomaly

- Cyanosis from R to L shunting at the atrial level
- CXR: Pronounced cardiomegaly secondary to right atrial enlargement
- EKG: R axis deviation and R atrial enlargement – WPW in 25%

CXR of Ebstein’s

EKG-Ebsteins anomaly
Echocardiogram of Ebstein’s:
apical 4-chamber view

Echocardiogram of Ebstein’s:
color doppler

Echocardiogram of Ebstein’s:
parasternal short axis view

The Big Picture

- Over 90 neonates with Ebstein’s Anomaly
 born each year in the USA**
- Early mortality = 25%
- Conservatively managed neonates have
 22% early mortality

Management Algorithm

Birth
- Stable
- Critical unstable
 - Supplemental oxygen for adequate cardiac output (SPO2)
 - Intubate, paralysis, inotropic support, NO, PGE1
 - As PVR ↓, remove support and follow closely for adequate cardiac output ± PGE1
 - Continue observation:
 - Frequent echocardiogram
 - End-organ function evaluation
 - Early surgery

Symptomatic Neonates with EA

Medical Management
- Adequate CO
- Adequate SaO2
- Worse T waveform
- Low CO
- Severe cyanosis

Continued observation
- Cardiac output ± PGE1
- Surgical evaluation
- Cardiopulmonary bypass

GOSE Score

Ratio of areas of the cardiac chambers translates to mortality risk

<table>
<thead>
<tr>
<th>Area of (RA + aRV)</th>
<th>Area of (RV + LV + LA)</th>
<th>GOSE Ratio</th>
<th>Mortality Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>I</td>
<td><0.5</td>
<td>8%</td>
</tr>
<tr>
<td>II</td>
<td>II</td>
<td>0.5-1.0</td>
<td>8%</td>
</tr>
<tr>
<td>III (acyanotic)</td>
<td>III</td>
<td>1.1-1.4</td>
<td>10% early, 45% late</td>
</tr>
<tr>
<td>III (cyanotic)</td>
<td>III</td>
<td>1.1-1.4</td>
<td>100%</td>
</tr>
<tr>
<td>IV</td>
<td>IV</td>
<td>>1.5</td>
<td>100%</td>
</tr>
</tbody>
</table>

Who needs early operation?

- Neonates with EA and:
 - Anatomic pulmonary atresia
 - GOSE III and IV
 - Severe tricuspid regurgitation (grade 3-4/4)
 - Ventilator dependency
 - Failed medical therapy
 - GOSE II (acyanotic)
 - Increasing cyanosis
Which operation to do?

Anatomic Pulmonary Atresia
- Diminutive RV with Mild TR
- Small RV ± reduction aortoplasty
- Small RV ± sildenafil
- Normal LV Size ± early BDG

Small RV
- Shunt palliation
- Biventricular Repair with RV-PA conduit

Normal LV Size
- Biventricular Repair with RV-PA conduit
- BTS ± reduction aortoplasty

Transplant

Functional Pulmonary Atresia
- Small LV Size

Small Left Ventricle

Which operation to do?

Functional Pulmonary Atresia
- Small LV Size
- Small LV Size ± early BDG
- Small LV Size ± late BDG

Transplant
Apical 4-Chamber Images within 1st Week of Life:
Severe TV Displacement and Mild TR; intubated on iNO

Short Axis Images within 1st Week of Life:
Severe TV Displacement and Mild TR; intubated on iNO

WHICH OPERATION TO DO?

- Functional Pulmonary Atresia
 - Normal LV Size
 - Small LV Size
 - Transplant
 - Emergent ligation of MPA
 - Starnes palliation
 - BTS or Hybrid
 - Complete Biventricular Repair

SEVERE TRICUSPID REGURGITATION
Neonates with EA 1994-2010 (n=44)

- Medical management (n=15)
- Medical management incomplete (n=4)
- Complete repair in infancy (9/15 alive)
- Partial TET + Pulmonary Atresia (n=2)
- BTS + Pulmonary valvotomy (n=2)

- Neonatal surgical intervention (n=23)
- Starnes palliation (n=7)
- Partial TET (n=1)
- Complete Repair (n=20)
- No Pulmonary Atresia (9/10 alive)
- Minimal TR, Pulmonary Atresia (n=2)

- Died before intervention (n=2)
- Complete repair in infancy (9/15 alive)

Mean wt: 3.9 ± 2.0 kg (1.9 – 8.6 kg)
Mean follow-up: 5.8 ± 4.5 yrs (0.2-16 yrs)

The First Neonate: 16 Years Later

Apical 4-Chamber Images October, 2009 (original surgery in 1994)