“Diabetic Heart Disease”

Ram C Sharma, MD, DNB (Med), FRCP (Edin.), FACC, FSCAI
Associate Professor of Medicine
Div. Of cardiology, Quillen College of Medicine
East Tennessee State University
Johnson City, TN USA

Diabetes Heart Disease”

• Association between diabetes and heart diseases
• Prognosis
• Pathophysiology
• Clinical presentations and syndrome
• Treatment
• Guidelines: Update 2011

Disclosures: None

DISCLAIMER
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.
Diabetic Heart Disease

- Association between diabetes and heart diseases
- Prognosis
- Pathophysiology
- Clinical presentations and syndrome
- Treatment
- Guidelines: Update 2011

Diabetes & CVD

- Framingham Heart Study showed that the frequency of heart failure is twice in diabetic men and five times in diabetic women compared with age-matched control subjects.

Diabetic Heart Disease

- Increased incidence of CV disease in diabetics.
- CVD in approx. 70% in diabetics.
- Though there is significant decline in CV disease in US but the increasing incidence of diabetes is threatening this trend.
- The direct economic cost of DMII has been estimated to be $172 billion in 2007 in US

Diabetes: Higher risk for

- CAD
- PVD
- Autonomic disturbances and arrhythmias
- Heart failure

Diabetic Heart Disease

- Association between diabetes and heart diseases
- Prognosis
- Pathophysiology
- Clinical presentations and syndrome
- Treatment & Guidelines: Update 2011

FHS: Diabetes is associated with 3 times risk of CV events and CV deaths
ACS: diabetes associated with worse prognosis
Diabetics are more likely to fail thrombolytic therapy.
Independent risk factor for stent thrombosis
SIRIUS trial were more likely than non-diabetics to require revascularization

Individuals with DM have higher absolute reductions in CVD outcomes than nondiabetic individuals when treated for hypertension and dyslipidemia
Coronary Equivalent

Diabetic Heart Disease

- Association between diabetes and heart diseases
- Pathophysiology
- Clinical presentations and syndrome
- Prognosis
- Treatment
- Guidelines: Update 2011

Clinical Syndromes

- Macrovascular disease: Accelerated atherosclerosis
 - CAD
 - PVD
- Microvascular disease
- Myocardial dysfunction
 - Diastolic heart failure
 - Systolic heart failure

Pathogenesis

- Accelerated atherosclerosis
- Endothelial dysfunction
Pathogenesis

- Effect of insulin
- Effect of hyperglycemia
- Energy derangements
- Hypertension and dyslipidemia

Multifactorial

- Autonomic dysfunction
- Metabolic derangements
- Abnormalities in ion homeostasis
- Alteration in structural proteins
- Interstitial fibrosis

Endothelial Dysfunction

- Endothelial dysfunction is characterized by impaired endothelium-dependent vasodilation
- “Endothelial activation,” which is associated with a proinflammatory, proliferative, and procoagulatory milieu that promotes initiation and complications of atherogenesis.
- Insulin resistant

Macrovascular Disease

- Dyslipidemia is highly correlated with atherosclerosis, and up to 97% of pts with diabetes have dyslipidemia.
- DM: Mostly small dense LDL particles. Once oxidized, these particles act as “foreign” & attract leukocytes.
- Glycation of LDL lengthens its half-life, therefore make them more atherogenic.
- Glycation of HDL shortens its half-life and renders it less protective against atherosclerosis.
- Endothelial dysfunction

Microvascular Disease

- Small vessel disease in DM
- Diabetes contributes to defects in the autonomic NS, the endothelium, and local metabolism, all of which can result in microvascular disease.
- Patients with DAN have increased rates of SCD as well as a higher overall CV mortality rate.
- Endothelial dysfunction
- Capillary BM thickening: affect transport of metabolic products, permeability

Strong Heart Study

- “Non–insulin-dependent DM has independent adverse cardiac effects, including increased LV mass and wall thicknesses, reduced LV systolic chamber and myocardial function, and increased arterial stiffness.”

Strong Heart Study

- “Non–insulin-dependent DM has independent adverse cardiac effects, including increased LV mass and wall thicknesses, reduced LV systolic chamber and myocardial function, and increased arterial stiffness.”

Circulation. 2000;101:2271-2276.)
Morphologic Changes

- Histological studies of autopsy and biopsy specimens demonstrate a constellation of cardiac morphological abnormalities:
 - Myocyte hypertrophy
 - Perivascular fibrosis
 - Increased quantities of matrix collagen, cellular triglyceride, and cell membrane lipid.
- These findings are consistent with nonenzymatic glycation of vascular and membrane proteins, increased cellular fatty acid uptake, and hyperglycemia-induced oxidative stress.

Metabolic Adaptation

- Different Sustained Stimuli (e.g., Diabetes, Pressure Overload)
 - Metabolic Signals
 - Altered Metabolism (Pathological Accumulation of Glucose and Fatty Acid Metabolites)
 - Transcriptional Signals
 - Adaptation
 - i.e., Induction of Enzymes, Mitochondria Switching, Mitochondrial Cardiac Output

Metabolic Maladaptation

- Over-Intense or Multiple Sustained Stimuli (e.g., Diabetes plus Pressure Overload)
 - Metabolic Signals
 - Altered Metabolism (Pathological Accumulation of Glucose and Fatty Acid Metabolites)
 - Transcriptional Signals
 - Maladaptation
 - i.e., Induction of Apoptosis, Chronic Activation of PKCs, Mitochondrial Membrane Vesiculation, Reactive Oxygen Species Generation, Cardiac Membrane Dysfunction

Glucose transport in the heart
Effect of FFA on MVO2

- Multiple animal studies show 26-72% increase in MVO2
- This was reversed by GIK
- FAO requires 11% to 12% more oxygen for a given amount of ATP produced

Opie LH. J Am Coll Cardiol, 2009; 54:1637-1646
Diabetic Cardiomyopathy

- Common co-occurrence CHF & DM
- In ALLHAT, pts with diabetes had a nearly 2-fold risk for HF hospitalization or death after adjustment for other risk factors (RR, 1.95)
- FHS:
 - Increased risk of CHF in diabetics. X2 in men, X5 in women
 - The association was even stronger in younger pts (ages ≤ 65 yr), being 4-fold higher in male pts and 8-fold higher in female pts.
 - Mean survival after the onset of heart failure was 1.7 years in men and 3.2 years in women
 - 1-year and 5-year survival rates were 57% and 25% in men and 64% and 38% in women, respectively
- Leading cause of hospitalization in pts over 65 yr

ALLHAT 2006 Circulation 113: 2201–10

Patients with CHF have higher risk of developing diabetes.

Subgroup analysis of SOLVD showed that 5.9% of pts developed diabetes over mean f/u of 2.9 yrs.

Patients with diabetes that develop HF have a markedly increased mortality

Risk Factors for developing HF in Diabetics

- HbA1c
- BMI
- HTN
- CAD
- Increasing age
- Use of insulin
- End-stage renal disease, nephropathy
- Proteinuria and albuminuria
- Retinopathy
- Duration of DM
Diabetic Cardiomyopathy: Pathogenesis

Diabetic Heart Disease

- Association between diabetes and heart diseases
- Pathophysiology
- Clinical presentations and syndrome
- Prognosis
- Treatment & Guidelines: Update 2011

Management

- Tight control of glucose is associated with reduction in microvascular complications.
- The benefit is unclear for macrovascular disease.

Management: Exercise

- NHI survey: >62% responders no exercise
- Average Reduction
 - BMI 5%
 - Body fat 15%
 - BP 5.1mmHg
 - TG 26 mg/dl
 - HbA1c (intense exercise)
- Increase
 - HDL 5mg/dl
 - CV fitness
 - VO2 max

- Exercise improves insulin sensitivity
- Improves endothelial dysfunction
- Antiinflammatory effect
Exercise

- Clinical benefits are uncertain
- At least moderate intensity exercise
- Duration (per week)
 - Mod intensity >150 min
 - Vigorous-intensity >90 min
 - Minimum 10 min per session
- On non consecutive days
- Combined with other life style modifications.

Management

- The Diabetes Control and Complications Trial for type 1 diabetes mellitus and the United Kingdom Prospective Diabetes Study.
- Both trials demonstrated the efficacy of intensive glucose control in reducing the risk of microvascular complications such as retinopathy, neuropathy, and nephropathy
- UKPDS: For every 1% reduction in HbA1c in the risk of HF fell by 16%.