Idiopathic Constrictive Pericarditis

David R. Ginn, M.D. FACP

DISCLAIMER
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.

• JP is a 61 year old white male seen at BRMC on 8/25/09 for complaints of chest pain radiating to the neck and dyspnea.
• NKA
• Medications: metformin, crestor
• Past Medical History: Type 2 DM, HTN, Hyperlipidemia

• Past Surgical History: Left hand reconstructive surgery, repair of a crush injury of the right knee and thigh, left tibia ORIF, and lumbar spine surgery
• Family History: Dad died of MI age 77, Mom died of MI age 64
• Social History: no alcohol, quit tobacco 35 years ago, works as a farmer
• Review of Systems: otherwise negative

• Physical Examination: Temp 96.7, pulse 87, Blood Pressure 106/70 RR 16
• HEENT: normal
• Chest: clear
• Cardiovascular: normal S1 and S2, no rubs, gallops, or murmurs
• Abdomen: normal

• Extremities: 1+ lower extremity edema
• Neurologic: mildly sedated, no lateralizing findings

• Troponin I < 0.05
• Na 134, K 4.0, glucose 248, creatinine 1.09
• Hgb 14.5, WBC 14.4
• CRP 6.23
• Cholesterol 166, HDL 46, Triglycerides 139 LDL 92
• BNP 14.9
EKG
- Mild sinus tachycardia
- T wave flattening in the inferior leads

CXR PA and Lateral
- Atelectasis in the lung bases

Lexiscan Stress Test
- Chest pain occurred
- EKG: no evidence of ischemia or arrhythmias
- Ejection Fraction 59%
- No perfusion defects noted

- The patient was discharged from BRMC to follow up with his PCP
• On 11/05/09 the patient presented to HVHMC with a chief complaint of chest pain and dyspnea
• HPI: The patient had progressive exertional dyspnea, dry cough, 3 pillow orthopnea and a 20 pound weight gain over one to two weeks

• Physical Examination: Temp. 98, BP 133/76, pulse 97, RR 21, poxim 96% on 2 liters O2
• HEENT: JVD
• Chest: decreased breath sounds at the lung bases
• Cardiovascular: decreased heart tones
• Abdomen: normal
• Extremities: 1+ UE and 3+ LE edema

Laboratory
• Na 136, K 4.2, BUN 18, creatinine 1.34 glucose 123
• Hgb 13.5, WBC 7.3
• Tl 0.05
• D-dimer 2.37
• BNP 220

EKG
• Low voltage
• Non specific T wave abnormalities
CXR PA and Lateral
• Bilateral pleural effusions

CT Scan of the Chest
• No PE
• Large right and moderate left pleural effusions
• Small pericardial effusion
• Right lower lobe atelectasis
• Ascending aorta 4.9 cm

Chest MRA
• 4.9 aneurysmal dilatation of the ascending thoracic aorta without dissection
• 2.7 proximal descending thoracic aorta

Echocardiogram (TTE)
• EF 55%
• RV: normal
• Trace TR
• Thickened, calcified, bicuspid aortic valve
• Normal pericardium
Left and Right Heart Catheterization
Hemodynamics

- Cardiac output 2.4
- Cardiac Index 1.1
- RA 17
- RV 38/14/20
- PA 34/20/26
- PCW 19
- LV 107/15/25

Coronary Arteriograms

- Left Main: normal
- LAD: normal
- LCX: mid 30-40% stenosis
- RCA: normal

The patient underwent a therapeutic thoracentesis and clinically improved
He was scheduled to have an aortic valve and root replacement and discharged 11/11/09.

CV Surgery 11/16/09 Findings

- Diffusely thickened (1 cm) pericardium with dense adhesions to the epicardium which prevented addressing the AV and aortic root
- Pericardium was resected as much as possible from the interventricular septum to the lateral right atrium
- 700 cc right pleural fluid was drained
Perioperative TEE

- EF: 55-60%
- RV: normal
- Atria: normal
- MV: normal
- TV: trace TR
- AV: Bicuspid (left and right coronary leaflets fused), no aortic stenosis, mild to moderate regurgitation

TEE continued

- PV: normal
- Ascending aorta 48mm
- Pericardium: thickened (4mm) very small effusion

Pathology

- Gross: rubbery yellow to red tissue
- Microscopy: cytologically bland spindle cells separated by abundant fibrous stroma
- Cytokeratin strongly positive (positive cells are regular suggestive of a reactive process and not mesothelioma)

Pathological Diagnosis

- Chronic fibrous pericarditis
Tissue Cultures

- No organisms or WBCs noted on gram stain
- Viral cultures negative
- Fungal cultures negative
- AFB cultures negative
- Routine cultures negative

Postscript

- The patient returned to HVHMC 11/25/09 with severe dyspnea on exertion and right pleural effusion.
- He was symptomatically improved after a thoracentesis removed 2200 cc of fluid.

Constrictive Pericarditis

- Scarring and loss of elasticity of pericardial sac
- Usually chronic, but can be subacute and transient
- The pericardium is thicker than normal in 80% of cases
- Cardiac filling is impeded by external force
- Total cardiac volume cannot change

- There is ventricular interdependence
- Cardiac compression occurs in mid through late diastole
- The bimodal pattern of venous return is maintained
- Venous return to the right heart does not increase during inspiration
- Respiratory variation in intrathoracic pressure with inspiration is not transmitted to the heart
• Early diastolic filling is more rapid than normal
• Neither ventricle fills in mid through end diastole

Cardiac Tamponade VS Constrictive Pericarditis

Common Features
• Diastolic dysfunction
• Preserved ventricular EF
• Increased ventricular interaction
• Elevated central venous, pulmonary venous, and ventricular diastolic pressures
• Pulmonary hypertension (systolic 35-50 mmHg)

Distinctive Features
• In tamponade the pericardium transmits respiratory variation in thoracic pressure to the heart
• In tamponade venous return increases enlarging the right heart which encroaches on the left
• In constrictive pericarditis there is impaired left ventricular filling due to a decreased pressure gradient from the pulmonary vessels
• Unlike in tamponade equalization of right atrial, pulmonary venous, and ventricular diastolic pressure is not present throughout the respiratory cycle
• Right atrial pressure is not changed by inspiration

Etiology of Constrictive pericarditis

• Idiopathic or viral: 42-44%
• Following cardiac surgery: 11-37%
• Following radiation therapy: 9-31%
• Connective tissue disease: 3-7%
• Post-infectious (TB): 3-6%
• Miscellaneous: 1-10%

Miscellaneous Causes

• Malignancy
• Trauma
• Drug induced
• Asbestosis
• Sarcoidosis
• Uremia

• Tuberculosis accounted for 49% of constrictive pericarditis in 1962
• This is rare now but the incidence may increase with immigrants and those infected with HIV
History

- Fluid overload
- Diminished cardiac output with exertion (fatiguability, DOE)
- Unexplained elevation in jugular venous pressure

Physical Examination

- Elevated jugular venous pressure (93%)
- Peripheral edema
- Ascites
- Pulsatile hepatomegaly
- Pleural effusions

- Pulsus paradoxus is uncommon
- Kussmaul’s sign (lack of inspiratory decline in jugular pressure) is noted in 13-21%
- Kussmaul’s sign does not distinguish from severe TR or right heart failure

- Pericardial knock (third heart sound) in 47%
- Pericardial friction rub in 16%
• Profound cachexia may be noted in late stage disease

EKG
• Non specific ST-T wave changes
• Low voltage (27%)
• Atrial fibrillation (22%)

Chest X-ray
• Calcification around the heart (lateral or anterior oblique views) in 27%
• These patients were more likely to have idiopathic disease, and longer duration of disease
• Pleural effusions

Echocardiography
• Transthoracic echo is insensitive
• TEE correlates with CT scan of the chest
• Abrupt posterior motion of the septum in early diastole with inspiration is noted
<table>
<thead>
<tr>
<th>TEE</th>
<th>Doppler echocardiography</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Increased pericardial thickening (37%)</td>
<td>• High E velocity of right and left ventricular inflow due to rapid early diastolic filling</td>
</tr>
<tr>
<td>• Abnormal septal motion (49%)</td>
<td></td>
</tr>
<tr>
<td>• Atrial enlargement (61%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CT Scan</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Thickened pericardium (>4mm) in 72%</td>
<td>• Pericardial thickening</td>
</tr>
<tr>
<td>• Pericardial calcification in 25%</td>
<td>• Dilatation of the inferior vena cava</td>
</tr>
<tr>
<td></td>
<td>• Therapeutic procedure of choice?</td>
</tr>
<tr>
<td>Differential Diagnosis</td>
<td>Restrictive Cardiomyopathy</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>• Restrictive cardiomyopathy</td>
<td>• LVEDP is higher than RVEDP</td>
</tr>
<tr>
<td>• Cirrhosis with ascites</td>
<td>• LVEDP and RVEDP are nearly equal in CP</td>
</tr>
<tr>
<td></td>
<td>• Endomyocardial biopsy may be helpful in RC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasma BNP</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Elevations in Constrictive pericarditis should be much less than in restrictive cardiomyopathy</td>
<td>• Pericardectomy (should be as complete as possible)</td>
</tr>
<tr>
<td></td>
<td>• Operative mortality: 12% (1970-1885)</td>
</tr>
<tr>
<td></td>
<td>• Operative mortality: 6% (1977-2000 at Mayo Clinic, Cleveland Clinic, and Johns Hopkins)</td>
</tr>
</tbody>
</table>
At the Mayo Clinic 83% of 90 long term survivors were free of symptoms
Patients with mild constriction, advanced disease, or mixed constrictive-restrictive disease may not benefit from surgery

Survival at the Mayo Clinic
- 5 year: 78%
- 10 year: 57%

Predictors of Adverse Outcome
- Older age
- Renal dysfunction
- Pulmonary hypertension
- Left ventricular dysfunction
- Hyponatremia

Etiology of CP and Seven Year Postop Survival Rates
- Idiopathic: 88%
- Post surgical: 66%
- Radiation induced: 27%
End stage Disease

- Cachexia
- Atrial fibrillation
- Low cardiac output
- Hypoalbuminemia
- Impaired hepatic function due to chronic congestion

Cirrhosis with Ascites

- Jugular venous pressure falls rapidly with removal of ascitic fluid