Chronic Viral Infection: challenges and new opportunities

Jonathan Moorman, M.D., Ph.D.
Professor, Infectious Diseases
Quillen College of Medicine
July, 2011

Disclaimer
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT

Disclosures
- Grant funding from NIH/NIAID
- Clinical trials with Gilead, GSK, and Wyeth/Pfizer

To discuss
- Overview of the problems
- What we think might be going on….
- Novel pathways
- Novel treatments
Co-infection: A Significant Problem

- HIV affects 40 million globally and about 1 million in the U.S.
- HCV affects 200 million globally and 4 million in the U.S.
- Prevalence of co-infection varies from 4% to greater than 90% depending on the population
- In IV drug users and hemophiliacs, the prevalence has been as high as 98%
- MSM sexually-acquired HCV appears to occur in the setting of high risk exposures (STDs, traumatic intercourse)

HIV and HCV: more similar than you might think

<table>
<thead>
<tr>
<th>HIV</th>
<th>HCV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome</td>
<td>ssRNA retrovirus</td>
</tr>
<tr>
<td>Transmission</td>
<td>Sexual/IVDU</td>
</tr>
<tr>
<td>Viral kinetics</td>
<td>Massive production</td>
</tr>
<tr>
<td>Viral load</td>
<td>Correlates well with disease</td>
</tr>
<tr>
<td>Major target</td>
<td>T cell</td>
</tr>
<tr>
<td>Latency</td>
<td>Yes</td>
</tr>
<tr>
<td>Goal of therapy</td>
<td>Viral suppression</td>
</tr>
<tr>
<td>Drug resistance</td>
<td>Occurs</td>
</tr>
</tbody>
</table>

WHY PERSISTENCE?

WHY PERSISTENCE?

New Targets for chronic viral infection: the negative immunoreceptors

Immune exhaustion

PD-1 and HIV

- PD-1 expression on HIV-specific T cells is associated with T cell exhaustion and disease progression (Day et al. Nature 2006; 443: 350-354)
- Immune dysfunction was reversible in HIV-specific CD8+ T cells (Trautmann et al. Nat Med 2006; 12:1198-1202.)

PD-1 and HCV

PD-1 modulates regulatory T cells and suppresses T-cell responses in HCV-associated lymphoma.

New Targets: the Tim-3 story

Fig. 5. TIM-3 engages APC during the priming phase to stimulate the innate immune system to produce inflammatory cytokines that drive T-effector responses. In the effector phase, Th1 cells secrete Tim-3 and produce TNF-α, which drives effector T cells. Galactose-9 inhibits the infiltration of Th1 effector responses through TIM-3. TIM-3+ T cells can regulate Th2 responses and enhance Th1 responses. APC, antigen-presenting cell; TNF-α, tumor necrosis factor-α; Th1 cell, T helper type 1 cell.
Differential expression of TIM-3 on the surface of T cells regulates susceptibility to viral infection or development of autoimmune injury.

HCV and Tim-3: T cells
- Up-regulation on HCV-specific T cells
- Blockade is associated with improved CD4+ and CD8+ functions
- Dual expression of Tim-3/PD-1 on T cells has been described in co-infected patients and correlates with progression of liver disease

Tim-3 in monocytes, **HCV infection**
Defining an Initial Virologic Response

- **RVR**: HCV RNA Undetectable at Week 4

- **EVR**: HCV RNA ↓ ≥ 2 logs or Undetectable at Week 12

Initial Treatment of Chronic HCV - Predicting SVR Over Time

No matter what genotype, achieving RVR is crucial for a SVR

HCV monoinfection: Sustained Virologic Response With Peg-interferon and Ribavirin Combination Treatment

<table>
<thead>
<tr>
<th>Drug</th>
<th>Overall</th>
<th>Genotype 1</th>
<th>Genotype 2 or 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peginterferon alfa-2a plus ribavirin</td>
<td>56%</td>
<td>46%</td>
<td>76%</td>
</tr>
<tr>
<td>Peginterferon alfa-2b plus ribavirin</td>
<td>54%</td>
<td>42%</td>
<td>82%</td>
</tr>
<tr>
<td>Weight-based dosing</td>
<td>48%</td>
<td>88%</td>
<td></td>
</tr>
</tbody>
</table>

New Targets

STAT-C: Specifically Targeted Antiviral Therapy for Hepatitis C

- IFN + RBV + small molecule agents specifically inhibit HCV life cycle
- achieve RVRs and increase SVRs from 50 to 80%
- Pretreatment quasispecies confer resistance to all classes of inhibitors
- All therapies will still be IFN-based
- Sides effect: skin rash, renal toxicity
Therapies arrived: NS3/4A inhibitors

- The NS3/4a complex acts as a serine protease to process the HCV polyprotein
- Peptidomimetic inhibitors developed (oral)
 - Boceprevir
 - Telaprevir

+McCutshison et al. NEJM 2009; 360:1827.
+Honzaki et al. NEJM 2009; 360:1839-1850.
Summary: Treatment-naïve, Genotype 1
- Addition of protease inhibitor increases SVR by 1.7 fold
 - Boceprevir:
 - Telaprevir:
- 24 (±8) weeks of treatment is effective for many patients
- Adverse events include
 - Boceprevir: anemia, dysgusia
 - Telaprevir: skin rash, anemia
- Effective in African-Americans and patients with cirrhosis
- First line treatment for genotype 1 HCV now

Summary – Treatment-Experienced Patients
- Boceprevir and telaprevir increase SVR for non-responders
 - 48 weeks of treatment
- Probability of SVR depends on prior response to PegIFN/RBV
 - 75 - 85% in relapers
 - 50-65% in non-responders (non-null)
 - 30% in null-responders
- Null responders not optimally served by either drug

Summary
- Protease inhibitor + pegIFN/RBV expected to be the next standard of care for most patients with HCV genotype 1
- Treatment-naïve patients can anticipate SVR rates from 63%-75%
 - Shorter duration for many patients (response-guided therapy)
- Treatment-experienced patients can anticipate SVR rates ranging from 29%-88% depending on response to pegIFN/RBV
- Side effects:
 - Boceprevir: anemia, dysgusia
 - Telaprevir: rash, anemia
- Resistance in patients who don’t respond to pegIFN/RBV
- New agents are promising, probably with pegIFN + RBV
Summary

- HCV and HIV present similar challenging issues and perhaps underlying immunopathology
- Novel treatments for HCV will likely lead to substantial improvements in sustained virologic responses in both mono- and co-infected populations
- Novel pathways that mediate immune exhaustion are potential targets to improve host responses

Thanks....

- John Yao, MD, PhD
- Ying Zhang, MD, PhD
- Jerry Ma, MD, PhD
- Ni Lei, MD, PhD
- Chunlan Zhang, MD, PhD
- Xiaojun Ji, MD, PhD
- Jiamin Wang, MD, PhD
- Rose Wu
- Ashley Frazier
- Antwan Atia, MD
Consequences: not just persistence

Vaccine responses in chronic HCV infection

A Vaccine (Failure) Model

Does having HIV make HCV worse?

- Co-infected patients had higher HCV RNA viral loads*
- Co-infected patients had more rapid HCV viral replication and progressed more rapidly and frequently to hepatic fibrosis and cirrhosis than HIV (-) patients with HCV†
- In a large group of hemophiliacs, progression to liver failure was more likely and was inversely correlated with CD4 count‡

HIV/HCV Co-infection
RR for ESLD 6.14
RR for Cirrhosis 2.07

Fig. 1. Adjusted relative risk of decompensated liver disease or histological cirrhosis in patients with HIV/HCV co-infection compared with patients who have HCV infection alone (adapted from meta-analysis published by Graham and colleagues) [6].
