CHARLES BONNET SYNDROME

Suzanne Collier, MD
ETSU Psychiatry PGY-IV
September 17, 2010

DISCLAIMER
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.
CASE PRESENTATION

• 87 year old Caucasian female

• Patient seen as consult within hours of admission

• Admitted by her PCP, whom she’d seen as outpatient earlier that day

• Reason for admission and consult: “psychosis, altered mental status”
HISTORY OF PRESENT ILLNESS

• Patient accompanied by her daughter, who assists her mother in providing HPI and also provides collateral information.

• Visual hallucinations for 3 years.

• Initially VH occurred only at nighttime.

• VH were of animals that appeared smaller than they actually are, such as small cows, cats, horses, bears.

• Lilliputian hallucinations.

• Not frightening to patient.
HPI, CONTINUED

• In the last 2 to 3 months prior to admission, VH have been occurring in the daytime as well as nighttime

• In the last 3 to 4 weeks, she has begun seeing VH of men in her apartment (day and night)
 • Had good insight that they were not real, but felt frightened nonetheless

• More recently, she’s begun having VH of more and more people
ADDITIONAL HISTORY

• Patient’s son died 3 years ago around the time that VH began
• Patient diagnosed with macular degeneration 3 to 4 years ago
• Managed by PCP for depressive disorder and anxiety
 • Prescribed Xanax 0.5mg PO QHS and Zoloft 50mg PO Qday
 • Does not take either of these medications regularly
• No other past psychiatric history
DIFFERENTIAL DIAGNOSIS FOR COMPLEX VISUAL HALLUCINATIONS

• Hypnagogic hallucinations
• Peduncular hallucinosis
• Delirium tremens
• Parkinson’s disease and Lewy body dementia
• Migraine coma
• Visual field disturbance and Charles Bonnet syndrome
• Focal epilepsy
Complex Visual Hallucinations

<table>
<thead>
<tr>
<th>Disease</th>
<th>Special features of hallucinations</th>
<th>Duration</th>
<th>Consciousness</th>
<th>Insight</th>
<th>Sleep</th>
<th>Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypnagogic hallucinations</td>
<td>On falling asleep</td>
<td>Seconds to minutes</td>
<td>Drowsy</td>
<td>Usually preserved</td>
<td>Associated with narcolepsy</td>
<td>Brainstem in secondary cases</td>
</tr>
<tr>
<td>Peduncular hallucinosis</td>
<td>More often in evening. Any part of visual field. Rarely polymodal.</td>
<td>Often prolonged</td>
<td>Normal</td>
<td>Usually preserved</td>
<td>Disturbed</td>
<td>Brainstem or thalamus</td>
</tr>
<tr>
<td>Delirium tremens</td>
<td>Very variable hallucinations may be polymodal. Autonomic instability.</td>
<td>Often prolonged</td>
<td>Agitated and confused in later stages</td>
<td>Often reduced in later stages</td>
<td>REM overflow, with little sleep</td>
<td>None</td>
</tr>
<tr>
<td>Parkinson's disease and Lewy body dementia</td>
<td>Often in the evening. Any part of visual field. Rarely polymodal.</td>
<td>Minutes</td>
<td>Not unconscious, normal, or drowsy/inaccessible</td>
<td>Usually preserved</td>
<td>Reduced REM sleep</td>
<td>Widespread, cortex and brainstem</td>
</tr>
<tr>
<td>Migraine coma</td>
<td>Noted during recovery from coma</td>
<td>Up to 2 days</td>
<td>Usually normal at time of hallucination but may be depressed</td>
<td>Preserved</td>
<td>Unknown</td>
<td>Ataxia in some cases</td>
</tr>
<tr>
<td>Visual field disturbance and Charles Bonnet syndrome</td>
<td>Localized to disturbed visual field and often in early morning or evening</td>
<td>Prolonged</td>
<td>Normal</td>
<td>Preserved</td>
<td>Normal</td>
<td>Visual pathway from retina to striate cortex</td>
</tr>
<tr>
<td>Focal epilepsy</td>
<td>Brief, stereotyped. May be localized to part of visual field. May have other epileptic features. Normal between episodes</td>
<td>Usually seconds</td>
<td>Often impaired</td>
<td>Usually preserved</td>
<td>Normal</td>
<td>Posterior temporoparietal</td>
</tr>
</tbody>
</table>
IMAGING AND OTHER STUDIES

• **MRI brain without contrast:** No evidence of acute intracranial process. White matter foci that are nonspecific and most commonly associated with chronic small vessel ischemic change.

• **CT head without contrast:** No acute intracranial abnormalities appreciated.

• **Chest x-ray:** No acute change.

• **EEG:** 20 minute EEG, no evidence of epileptiform or seizure activity.
WHO WAS CHARLES BONNET?
HISTORY OF CHARLES BONNET SYNDROME

• 1769 - Charles Bonnet documented VH experienced by his 89 year old grandfather, Charles Lullin, who had cataracts
 • Bonnet was a Swiss naturalist, philosopher, and biologist.

• 1936 - Georges de Morsier, a neurologist, coined the eponym Charles Bonnet syndrome in recognition of Bonnet.
 • De Morsier defined CBS as visual hallucinations that occur in older people with otherwise intact mental functioning.
 • Vague diagnostic criteria
 CBS DIAGNOSTIC CRITERIA

- Diagnosis of CBS involves visual hallucinations that occur in older individuals who
 - (1) have intact mental function;
 - (2) do not have dementia, delirium, psychosis, or neurological diseases; and
 - (3) may or may not have ocular diseases

- The majority of criteria require that the person have insight.

- Other proposed/debated criteria: absence of other hallucinations (auditory, olfactory); absence of control over hallucinations; disappearance of hallucinations upon closing the eyes; with no additional delusions
PATHOPHYSIOLOGY

• VH can occur in patients with visual acuity loss or visual field loss from any cause, affecting any part of the visual pathway from the eye to the visual cortex

• Common underlying conditions include age-related MD, glaucoma, diabetic retinopathy, and cerebral infarction

• CBS does not occur with congenital blindness
• Hallucinations occur when visual sensory deafferentation leads to disinhibition of visual cortical regions, which then fire spontaneously

• Similar hallucinations have been reported by individuals subjected to visual deprivation experiments

• fMRI studies offer some support for this theory:

 • A 1998 fMRI study revealed that active hallucinations were associated with spontaneous activity in the ventral occipital lobe

 • The content of the hallucinations was associated with specific regional activation that correlated with the known specialized function of that area of the visual cortex

 • The neurobiology underlying VH in CBS has not been elucidated - possible denervation hypersensitivity?
PREVALENCE OF CBS

- Menon's 2003 study found that the prevalence of complex visual hallucinations in people with visual impairments is between 11% and 15%.

- In 2008 Kahn, using the criteria established by Teunisse et al. (1995), reported that the prevalence of CBS hallucinations in persons with end-stage AMD was as high as 27%.

- Scott, Schein, Feuer, and Folstein's (2001) study on visual hallucinations in persons with retinal disease found that hallucinations were common among those with retinal disease; were underdiagnosed; and were not related to abnormal personality traits, cognitive deficits, or histories of personal or familial psychiatric morbidity.
A PERSONAL ACCOUNT
A PERSONAL ACCOUNT
CLINICAL FEATURES

• Diagnosis of ocular disease is generally established for at least one year before hallucinations emerge

• The likelihood of release hallucinations increases with lower visual acuity
 • Prevalence of hallucinations appears to increase with acuity worse than 20/60
 • More likely to occur with binocular versus monocular disease
CLINICAL FEATURES

- Release hallucinations
 - Can be simple, nonformed images such as lines, light flashes, or geometric shapes
 - Can be complex, formed images of people, animals, or scenes
- Content can be variable, even for individual patients
DESCRIPTION OF VH

• Images are usually colored and may be static, animated, or move en bloc across the visual field

• Usually do not have emotional impact or personal meaning

• No associated auditory or other sensory modality hallucinations

• Occur more often with the eyes open than closed

• Most complex VH occur in the setting of sensory deprivation
DIAGNOSIS

• Complete neurologic evaluation

• In absence of known eye disease, complete ophthalmologic evaluation with visual field testing

• Brain MRI if there is visual field deficit or other focal neurologic deficit

• If atypical features for CBS, further evaluation is needed
TREATMENT

• Reassurance

• Teach patients how to suppress hallucinations
 • close eyes
 • look away from the hallucination
 • increase visual stimuli (increased illumination)
 • increase social interaction
TREATMENT, CONTINUED

• Patients with continuous hallucinations or disturbing imagery may need specific treatment

 • **SSRIs**

 • antipsychotic medications (low dose olanzapine or quetiapine)

 • cholinesterase inhibitors

 • antiepileptic medications
A SUMMARY VIDEO
A SUMMARY VIDEO
REFERENCES

REFERENCES

