Single Ventricle Palliation Using a Ventricular Assist Device: A Quite Different Perspective

James J. Gangemi, M.D.
University of Virginia Health System
Quillen College of Medicine
East Tennessee State University
October 6, 2010
Johnson City, TN

Disclaimer
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.

HYPOPLASTIC LEFT VENTRICLE

• Hypoplastic Left Heart Syndrome (HLHS) accounts for ~9% of congenital heart defects
 • responsible for as many as 25% of cardiac deaths in the newborn period
 • 95% fatal by 1 month of life before the era of effective surgical palliation
 • Mean survival 4-23 days
 • Very rare case reports of survival into 20’s
HYPOPLASTIC LEFT VENTRICLE

• Anatomy
 – Hypoplasia or absence of left ventricle
 – Severe hypoplasia of ascending aorta
 • Ascending aorta 1-8mm (3.8 mm mean)
 – 55% <3mm
 – Serves only as conduit for retrograde blood flow to coronary arteries
 – Systemic circulation dependent on right ventricle via PDA
 – Dilated and hypertrophied RV is dominant ventricle and forms apex
 – Obligatory mixing of pulmonary and systemic venous blood in right atrium

• Clinical Features/Diagnosis
 – Diagnosis can be made in prenatal period
 – Tachypnea and cyanosis within 24 to 48 hours of birth
 – Diminished systemic perfusion rapidly occurs when ductus begins to close
 • Pallor, lethargy, and diminished pulses
 • Metabolic acidosis and renal failure

• Medical Support
 – PGE-1 (0.05mcg/kg/min) for ductal patency
 – Maintain hematocrit at 45 - 50%
 – Balance pulmonary blood flow
 – O$_2$ saturation 70 -75% (FIO$_2$ 0.18 - 0.21) prevents the pulmonary vasodilation associated with high O$_2$ concentrations (↑ pulm blood flow → ↓ systemic blood flow → acidosis)
 – Maintain PCO$_2$ 40 – 50 (↑ ventilation → ↓PVR and ↓ systemic blood flow)
 – Acidosis reversed rapidly with sodium bicarb
 – Inotropic support if patients with depressed RV function
HLHS Treatment Options

- Do Nothing
- Staged Norwood Palliation
- Transplantation

HYPOPLASTIC LEFT VENTRICLE

- Staged Surgical Therapy
 - Norwood procedure as neonate
 - Atrial septectomy
 - Systemic - pulmonary shunt
 - Aortic reconstruction
 - Bi-directional Glenn
 - 4 - 8 months
 - Fontan procedure
 - 24 - 36 months

NORWOOD PROCEDURE

- Reconstruct Aorta
- Atrial Septectomy
- Provide pulmonary blood flow with a shunt

Postoperative Care:
“The Fun Has Just Begun”

- Parallel Circulation
- Delicate balance between SVR/PVR
- Pulmonary steal
 - Low diastolic BP, coronary insufficiency, myocardial dysfunction
- Long circulatory arrest times-myocardial dysfunction
HYPOPLASTIC LEFT VENTRICLE

- Sano Modification
 - RV to PA conduit
 - Theoretically eliminates the aortic diastolic runoff and coronary steal that occurs during BT shunts
 - Improved immediate postop cardiac function
 - Less complex postop course
 - Improved growth of the PAs
 - Improved survival?
 - Improved neurologic function?

SANO MODIFICATION

HYPOPLASTIC LEFT VENTRICLE

- Bidirectional Glenn (“Stage 2”)
 - 4 - 8 months
 - Increases effective pulmonary flow which improves the systemic arterial oxygen saturation
 - Removes the obligatory volume load on the ventricle which allows time for resolution of excessive ventricular hypertrophy prior to the Fontan procedure
 - Alters the ventricular geometry
 - Right ventricular end-diastolic volume decreased by 33%
 - Right ventricular anterior wall increased in thickness by only 13%

Fontan Procedure (“Stage 3”)

Lateral Tunnel

Extracardiac
Fontan Procedure

Lateral Tunnel

Extracardiac

CHOP Experience by Era -Survival-

<table>
<thead>
<tr>
<th>Era</th>
<th>Norwood</th>
<th>Glenn</th>
<th>Fontan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1984–1988 (n=269)</td>
<td>56.2%</td>
<td>96.3%</td>
<td>76.0%</td>
</tr>
<tr>
<td>1989–1991 (n=255)</td>
<td>64.7%</td>
<td>80.0%</td>
<td>87.5%</td>
</tr>
<tr>
<td>1992–1994 (n=173)</td>
<td>67.6%</td>
<td>93.6%</td>
<td>93.1%</td>
</tr>
<tr>
<td>1995–1998 (n=143)</td>
<td>71.3%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Why can’t we perform all 3 operations at the time of the original operation?

- Increased pulmonary vascular resistance (PVR) in the neonate
 - Need for systemic to PA shunt
- Gradual relief of the obligatory volume load on ventricle imposed by a systemic to PA shunt
 - allows time for resolution of excessive ventricular hypertrophy

Transitional Circulation at Birth

- Pulmonary blood flow increases 8-10 fold
- PA pressures are ½ systemic at 24 hours of life and reach adult levels at 2-6 weeks after birth
- Similar pattern in both humans and animals
Physiologic Problems Following Norwood/Stage 1 Palliation

- Parallel systemic and pulmonary circulations
- Ventricular volume overload
- Increased ventricular workload
- Increased myocardial wall tension
- Excessive or inadequate pulmonary blood flow

Physiologic Problems Following Stage 1 Palliation

- Coronary artery, brain, etc., oxygen saturations are 60-75%
- Coronary perfusion becomes inadequate secondary to diastolic shunt runoff
- Sano-fails to alleviate:
 - issues of hypoxemia
 - parallel circulations
 - volume loading of the single ventricle

Stage 2 (Bi-directional Glenn) and Stage 3 (Fontan)

- Survival and hemodynamic stability of Stage 2 and Stage 3 palliation improves dramatically
- Direct consequence of taking down the systemic shunt and establishing cavopulmonary blood flow

Can the Deleterious Effects Associated with Stage 1 Physiology be Eliminated?
Theoretical Advantages of a Cavopulmonary Assist Device

- Change a univentricular circulation to 2-ventricular physiology
 - pulmonary and systemic circulations in series rather than parallel
- Single ventricle pumps only 1 systemic ventricular output while the cavopulmonary assist device supports the equivalent of the right ventricular output
 - can overcome high PVR
- Single ventricle NOT subjected to volume overload
- Early reduction of volume work benefits long-term myocardial function

Theoretical Advantages of a Cavopulmonary Assist Device

- Coronary perfusion pressure, which is dependant on diastolic blood pressure may be improved
- Normal arterial oxygenation ranges
 - improve myocardial performance
 - prevent end-organ ischemia
 - protect neurologic development
 - minimize PVR
- Minimize (or eliminate) pathologic pulmonary vascular remodeling

Hypothesis

- Pump-assisted cavopulmonary diversion using a ventricular assist device would yield stable pulmonary and systemic hemodynamics and maintain pulmonary gas exchange without altering cardiac output in a neonatal lamb model
 - Can this acute study support an indication for a longer-term device using a similar, portable model of pump-assisted cavopulmonary diversion?

Methods

- 8 Newborn lambs anesthetized and mechanically ventilated
- Total cavopulmonary diversion using Levitronix PediVAS
- Hemodynamic Data measured every hour (8 hours)
 - Systemic arterial blood pressure
 - Central venous pressure
 - Pulmonary arterial pressure
 - Left atrial pressure
 - Continuous cardiac output
- Arterial blood gases
- Lactate levels
- ACT levels
Animal Model of Single Ventricle Palliation

Results

• 8 Newborn lambs
 – 100% survival
 – Mean age 5.25 days (range 2-10 days)
 – Mean weight 4 kg (range 2-6 kg)
 – Mean BSA 0.21m² (range 0.14-.28 m²)
• No evidence of thrombus (ACT 250-300)
• No evidence of excessive bleeding
Levitronix UltraMag VAD

- Smaller, portable, magnetically levitated ventricular assist device

UltraMag VAD

UltraMag Features

- Small and portable features make long term chronic studies more feasible.
- Only one moving part and a low priming volume (7.5 cc).
- No valves, bearings, seals or other sources of friction, which may reduce the level of hemolysis.
- No regions of stasis, heat generation, wear, or mechanical malfunction, which may make it less prone to thrombus formation.
- Does not have a limited life span which makes it a more practical consideration for long term survival models of cavopulmonary support, which has never been studied.
- Has the possibility, like the PediVAD VAD, of being available for clinical use in the near future.
Table 3: Hemodynamic and Pulmonary Vascular Reactivity Indicators

Indicator	Mean ± SD	Mean ± SD	p Value ND vs Mean T
Mean Arterial Pressure	128.6 ± 7.6	128.4 ± 10.2	0.2205
Mean Pulmonary Arterial Pressure	29.8 ± 6.6	29.8 ± 5.7	0.6710
Cardiac Output (liters/min)	5.2 ± 1.5	5.1 ± 1.5	0.7110
Pulmonary Capillary Wedge Pressure	10.5 ± 2.5	10.8 ± 2.2	0.2792
LVED Pressure (mmHg)	95 ± 15	74 ± 22	0.2300
Stroke Work (dyne.sec/cm²)	7.7 ± 1.8	7.4 ± 2.4	0.5340
Pulmonary Vascular Resistance	2.2 ± 0.7	2.1 ± 1.0	0.4680
Cardiac Index (liters/min/m²)	3.2 ± 0.8	3.3 ± 1.2	0.8590
Pulmonary Vascular Resistance (mmHg)	14.5 ± 4.2	14.4 ± 5.0	0.6907
Hematocrit (%)	39.4 ± 1.5	39.8 ± 1.5	0.1380

Experimental Group Cardiac Index

- Cardiac Index (liters/min/m²)

Experimental Group Pulmonary Vascular Resistance

- Pulmonary Vascular Resistance (mmHg)

Experimental Group Hematocrit

- Hematocrit (%)

Time (hours) vs Cardiac Index

Time (hours) vs Pulmonary Vascular Resistance

Time (hours) vs Hematocrit
Conclusions

- Total cavopulmonary diversion using a magnetically levitated ventricular assist device is feasible in an acute newborn lamb model
- Yields stable hemodynamics and adequate pulmonary gas exchange throughout the entire study
- PVR remained stable without evidence of elevation throughout the entire study
- Maintains a stable hematocrit with no evidence of excessive bleeding or thrombosis
- Data supports the indication for longer-term, survival studies

Future Considerations Using a Long-Term Device

- If the PVR continues to drop and reaches normal levels, can the animal be converted to an unassisted univentricular Fontan circulation after device weaning?
- What will be the effect of longer-term cavopulmonary assist on chronic maturation of the newborn transitional pulmonary vasculature?
- Can this serve as a bridge to neonatal Fontan repair of single ventricles?