Emerging Infections and Healthcare Preparedness
Paras Patel MD.

Disclaimer
NEITHER THE PUBLISHER NOR THE AUTHORS ASSUME ANY LIABILITY FOR ANY INJURY AND OR DAMAGE TO PERSONS OR PROPERTY ARISING FROM THIS WEBSITE AND ITS CONTENT.

What Are Emerging Infectious Disease?
• These are human illnesses caused by microorganisms or their poisonous byproducts and having the potential for occurring in epidemic numbers.
• These Infections have newly appeared in a population or have existed but are rapidly increasing in incidence or geographic range.

Receding – then Resurging?

1950s-60s: Infectious diseases apparently receding in developed countries
• Antibiotics and vaccines
• Pesticides to control mosquitoes
• Improved surveillance and control measures
• Early 1970s: Authorities proclaimed end of infectious disease era. Premature!
• >30 new or newly-discovered human IDs over past 40 yrs
• Penicillin began to lose its power to cure infections caused by Staphylococcus aureus
• In the 1970’s, there was a resurgence of sexually transmitted diseases and new diseases identified in the U.S. and elsewhere (Legionnaire’s Disease, toxic shock syndrome, Lyme’s disease).
• During the 1980’s, HIV emerged as a new infection and tuberculosis re-emerged in an antibiotic resistant form.
• Between 1980 and 1992, the death rate from infectious diseases increased 58%.
• The increase in drug resistance in strains of bacteria forced the U.S. to return to the pre-antibiotic era in the battle against many common organisms, at the same time that new bacterial and viral pathogens were appearing.
Why are we concerned about Emerging Infectious Diseases?

- These diseases
 - Pose a threat to all persons regardless of age, sex, lifestyle, ethnic background, or socioeconomic status
 - Cause suffering and death
 - Impose a financial burden on society.

Factors Related to the Emergence of Infectious Diseases

1. Biological — Genes, microbes, medicines, vaccines, blood and organ transplants, rapid microbial adaptation and resistance to antibiotics
2. Behavior — Sports, nutrition, sexuality, tobacco, alcohol, international travel
3. Environment: Physical — Air, water, toxins, radiation, pollution, noise, agricultural development, climate change, technology
4. Environment: Social — Housing, education, employment, and working conditions
5. Environment: Human Rights — Discrimination, war, torture, physical and mental abuse, lack of access to health care, prevention and health education
6. Breakdown of traditional basic public health infrastructure

Economic and Societal Impact of Some Infectious Diseases

<table>
<thead>
<tr>
<th>Disease</th>
<th>Annual cost</th>
<th>Type of cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquired Immunodeficiency syndrome (AIDS)</td>
<td>$5.8 billion</td>
<td>Direct medical charges, (1993 dollars)</td>
</tr>
<tr>
<td>Tuberculosis (TB)</td>
<td>$703 million</td>
<td>Direct medical charges, (1993 dollars)</td>
</tr>
<tr>
<td>Nosocomial infections (acquired in hospitals)</td>
<td>$4.5 billion</td>
<td>Hospital charges (1993 dollars)</td>
</tr>
<tr>
<td>Foodborne bacteria (FS)</td>
<td>$2.9–$6.7 billion</td>
<td>Direct and indirect costs (1993 dollars)</td>
</tr>
<tr>
<td>Human parvovirus (6–10)</td>
<td>$1.23 billion</td>
<td>Direct medical charges (1993 dollars)</td>
</tr>
<tr>
<td>Neonatal group B streptococcal infections (GN)</td>
<td>$294 million</td>
<td>Direct medical charges (1993 dollars)</td>
</tr>
<tr>
<td>Bacterial vaginosis (TV)</td>
<td>$1.0 billion</td>
<td>Direct medical charges (1993 dollars)</td>
</tr>
</tbody>
</table>

How Are Infectious Diseases Acquired?

- Inhalation
- Ingestion
 - Food, water, soil
- Percutaneous inoculation
- Absorption from mucous membranes
- Exposure to blood and body fluids
CDC’s targets nine categories of problems that cause human suffering and place a burden on society

- Antimicrobial resistance
- Foodborne and waterborne diseases
- Vectorborne and zoonotic diseases
- Diseases transmitted through blood transfusions or blood products
- Chronic diseases caused by infectious agents

CDC’s Target Areas (cont.)

- Vaccine development and use
- Diseases of persons with impaired host defenses
- Diseases of pregnant women and newborns
- Diseases of travelers, immigrants, and refugees

CONTROL MEASURES

- Water treatment
- Vector control
- Rodent reduction
- Vaccination
- Antibiotics

ROLE OF PUBLIC HEALTH

- Surveillance and early response (detect, investigate, initiate action and monitor)
- Assessment of health status, risks, and services available to a community
- Development of health policy
- Assurance of quality services (discourage inappropriate use of antibiotics)
- Laboratory identification is required for rapid and accurate diagnosis of an outbreak or unusual disease.
ROLE OF PUBLIC HEALTH
(CONT.)
• Rapid communication with medical providers
 hospitals and media to alert them to outbreaks
 and disease changes as well.
• Public and health care provider education about
 prevention or early identification and detection
• Environmental assessment and remediation,
 e.g. food inspection, water supply inspection,
 vector control.

EMERGING INFECTIOUS DISEASES
PART 2

New Emerging Infectious Diseases
• H1NI INFLUENZA
• Severe Acute Respiratory Syndrome (SARS)
• West Nile encephalitis (WNV)
• Monkey Pox
• Ebola
• Chikungunya virus

H1N1 Influenza virus
"THE INFLUENZA CLOCK IS TICKING, WE JUST DON'T KNOW WHAT TIME IT IS"

– Ed Marcuse, MD and past chairman, The National Vaccine Advisory Committee

What is Influenza?

- RNA Virus
- Genus A, B, and C

H1 N1
H2 N2
H3 N3
H4 N4
H5 N5
H6 N6
H7 N7
H8 N8
H9 N9
H10
H11
H12
H13
H14
H15
H16

Timeline of Emergence
Influenza A Viruses in Humans

Nucleoprotein (RNA)
Lipid Envelope
Capsid
Neuraminidase (Sialidase)
Hemagglutinin
Circulating Influenza Strains and Pandemics in the 20th and 21st Century

20-40 million deaths 1-4 million deaths 1-4 million deaths 13700 deaths

History of Novel H1N1

- March 2009 Novel H1N1 virus emerged in Mexico
- April 15, 2009 First novel H1N1 patient in the United States
- By April 22, 2009, enough cases were identified to prompt the CDC to activate the Emergency Operations Center to coordinate a public health response
- April 26, 2009 US Government declared a public health emergency
- June 11, 2009 WHO raised alert level to Phase 6 (global pandemic)
- June 19, 2009 All 50 states, the District of Columbia, and the U.S. Virgin Islands all reported novel H1N1 infection

Swine Influenza A(H1N1) facts

- Virus described as a new subtype of A/H1N1 not previously detected in swine or humans
- CDC determines that this virus is contagious and is spreading from human to human
What We Do Know

- This is an entirely new virus
- Genetic bits come from flu viruses that infect pigs, birds and humans
- It is easily transmitted among humans, especially the young
- No one, except those who have been infected, is immune
- Illness from the virus could become widespread quickly
- No previous vaccine, including seasonal flu vaccine, protects against infection
- H1N1 vaccine is available now.

Transmission to Humans

- Through contact with infected pigs or environments contaminated with swine flu viruses
- Through contact with a person with swine flu
- Human-to-human spread of swine flu has been documented also and is thought to occur in the same way as seasonal flu, through coughing or sneezing of infected people

What are the Symptoms of Influenza?

- Body aches
- Headache
- Chills and fatigue

Symptoms of Swine flu

- Systemic
 - Fever
- Psychological
 - Lethargy
 - Lack of appetite
- Nasopharynx
 - Runny nose
 - Sore throat
- Respiratory
 - Coughing
- Intestinal
 - Diarrhea
- Gastric
 - Nausea
 - Vomiting
Seasonal Epidemics vs. Pandemics

Seasonal Influenza
- A public health problem each year
- Usually some immunity built up from previous exposures to the same subtype
- Infants and elderly most at risk

Influenza Pandemics
- Appear in the human population rarely and unpredictably
- Human population lacks any immunity
- All age groups, including healthy young adults

What We’ve Learned from History

Pandemic influenza typically comes in waves. The great 1918-1919 pandemic came in 3 distinct 'waves'
- The second wave was very different – much more lethal
- Over the summer the virus had changed

SARS (SEVERE ACUTE RESPIRATORY SYNDROME)

A Novel Virus: SARS

SARS-associated Coronavirus.
Updated from Holmes

NEJM May 15, 2003
Epidemiology

- SARS was first noted in Guangdong Province, China in November 2002.
- Between November 16, 2002 and February 28, 2003, 792 cases were reported in this province.
- Healthcare workers and their contacts appeared to be affected by the outbreak.
- The index case for the illness in Hong Kong was a physician from Guangdong province who traveled to Hong Kong five days after the onset of symptoms.
- The index cases in Singapore, Thailand, Vietnam, and Canada were in travelers returning from Guangdong province or Hong Kong.
- The United States had 27 probable cases with no secondary cases and no deaths

SARS-BASIC FACTS

- SARS is an illness which can vary in severity and is caused by a Corona virus most likely of animal origin.
- The disease is spread by large respiratory droplets from sneezing and coughing within a radius of 6 to 8 feet.
- Incubation period-3 to 10 days
- It can survive on surfaces up to 3 days but is easily killed by standard disinfectants

SARS: Summary Points

- In retrospect epidemic started ~ November 2002 in Southern China
- February 2003 very infectious patient infects many guests at Metropole Hotel in Hong Kong who in turn spread SARS to their own countries
- World attention remained focused on SARS until global surveillance shows all chains of transmission interrupted ~ July 2003
SARS “over its peak”?

June 5 & 19, 2003

The Return of SARS--2004

• SARS reoccurred in China in 2004
• There were nine cases
• WHO issued a Global Health Advisory
• The outbreak was contained 5/18/04, but WHO advised continued vigilance
History

• First isolated from a febrile adult woman in the West Nile District of Uganda in 1937.
• West Nile virus (WNV) has emerged in the temperate regions of Europe and North America in 1999, with encephalitis reported in humans and horses.
• The subsequent spread in the United States is an important milestone in the evolving history of this virus.

FACTS ABOUT WNV

• West Nile Fever is a “flu-like” illness of sudden onset, caused by a subgroup of viruses called Flavoviruses
• Symptoms: fever, sore throat, headache, malaise, arthralgia or myalgia and rash.
• Complications: meningitis or encephalitis

Life cycle

• Incubation period: usually 3 to 12 days
• Communicability: no direct person to person transmission
• Mode of transmission: the bite of an infected mosquito
• Prevention: Mosquito eradication, mosquito repellents
• Treatment: none specific
• Mortality rate: 3 to 15%
A New Infectious Disease Outbreak

MONKEY POX
- Monkey pox, an Orthopox virus caused infection, closely resembles small pox clinically
- Recently transmitted to humans by prairie dogs infected by a Gambian giant rat imported from Africa
- Symptoms: fever, rash, muscle aches, cough
- Mortality: 1 to 10% in Africa, none in the US

MONKEY POX
- Transmission: person to person has occurred
- Treatment: small pox vaccination if early in the course of the disease
- Prevention: small pox vaccination is partially successful, public education about the dangers of illegally imported pets
EBOLA

- Ebola is among the most virulent pathogens of humans, causing severe hemorrhagic fever that resembles fulminant septic shock
- RNA virus
- Mode of transmission: handling infected wild animals and may be spread person to person by contact with body secretions
- Incubation period: 2 to 21 days
- Symptoms: sudden onset of fever, myalgia, headache, followed by vomiting, diarrhea, and rash.
- Mortality: from 50 to 90% in Africa
- Complications: primarily hemorrhagic and pulmonary complications
- Treatment: supportive
- Prevention: caution in contact with infected monkeys

CHIKUNGYUNYA VIRUS

- The cause of an ongoing epidemic in India and the islands of the southwest Indian Ocean (e.g., Reunion).
- In India, 1.4 million cases were reported in 2006.

INTRODUCTION

- It is a single-stranded RNA arthropod borne virus of the genus Alphavirus.
- First isolated from mosquitoes and humans during an outbreak in Tanganyika (Tanzania) in 1952-53
- It means "that which bends up"
- Multiple outbreaks beyond west Africa have been described.
- Since 2004 chikungunya has spread broadly, causing massive outbreaks with explosive onset in the Indian Ocean region, India and other parts of Asia
EPIDEMIOLOGY

- It is an endemic in parts of West Africa
- Seroprevalence in 35 to 50 percent of the population in the absence of recognized outbreaks.
- Rapid spread in the last few years may also be related to a viral mutation that enhances replication efficiency in the mosquito.

CLINICAL MANIFESTATIONS

- **Acute infection**
 - High fever, bilateral polyarthralgia with intense pain, macular or maculopapular rash.
 - Additional manifestations may include headache, myalgia, and gastrointestinal symptoms.

- **Persistent rheumatologic symptoms** following acute illness. These may include polyarthralgia, morning stiffness, tenosynovitis and Raynaud phenomena.

- **Severe complications** such as meningoencephalitis, cardiopulmonary decompensation, acute renal failure and death have been described with greater frequency among patients older than 65 years and those with underlying chronic medical problems.
Diagnosis

• Serum IgM anti-chikungunya virus antibodies are present starting about five days (range 1 to 12 days) following onset of symptoms and persist for several weeks to three months.
• IgG antibodies start to appear about two weeks following onset of symptoms and persist for years.

Treatment

• supportive care including anti-inflammatory and analgesic agents.
• No antiviral agents have been shown to be effective in human infection.
• Prevention consists of minimizing mosquito exposure.